Identification of neural feedback for upright stance in humans: stabilization rather than sway minimization.
نویسندگان
چکیده
A fundamental issue in motor control is how to determine the task goals for a given behavior. Here, we address this question by separately identifying the musculoskeletal and feedback components of the human postural control loop. Eighteen subjects were perturbed by two mechanical perturbations (gentle pulling from behind at waist and shoulder levels) and one sensory perturbation (movement of a virtual visual scene). Body kinematics was described by the leg and trunk segment angles in the sagittal plane. Muscle activations were described by ankle and hip EMG signals, with each EMG signal computed as a weighted sum of rectified EMG signals from multiple muscles at the given joint. The mechanical perturbations were used to identify feedback, defined as the mapping from the two segment angles to the two EMG signals. The sensory perturbation was used to estimate parameters in a mechanistic model of the plant, defined as the mapping from the two EMG signals to the two segment angles. Using the plant model and optimal control theory, we compared identified feedback to optimal feedback for a range of cost functions. Identified feedback was similar to feedback that stabilizes upright stance with near-minimum muscle activation, but was not consistent with feedback that substantially increases muscle activation to reduce movements of the body's center of mass or center of pressure. The results suggest that the common assumption of reducing sway may not apply to musculoskeletal systems that are inherently unstable.
منابع مشابه
Dynamic regulation of sensorimotor integration in human postural control.
Upright stance in humans is inherently unstable, requiring corrective action based on spatial-orientation information from sensory systems. One might logically predict that environments providing access to accurate orientation information from multiple sensory systems would facilitate postural stability. However, we show that, after a period in which access to accurate sensory information was r...
متن کاملControlling human upright posture: velocity information is more accurate than position or acceleration.
The problem of how the nervous system fuses sensory information from multiple modalities for upright stance control remains largely unsolved. It is well established that the visual, vestibular, and somatosensory modalities provide position and rate (e.g., velocity, acceleration) information for estimation of body dynamics. However, it is unknown whether any particular property dominates when mu...
متن کاملEffects of saccadic eye movements on postural control stabilization
Several structures of the central nervous system share involvement in both ocular and postural control, but the visual mechanisms in postural control are still unclear. There are discrepant evidences on whether saccades would improve or deteriorate stabilization of posture. The purpose of this study was to determine the influence of saccadic eye movements on postural control while standing in d...
متن کاملA Three-dimensional Balance Control Model of Quiet Upright Stance Based on an Optimal Control Strategy
INTRODUCTION Many existing balance control models have adopted a single-segment inverted pendulum to model the human body, and have focused on investigating postural sway only in the sagittal plane (e.g. Maurer et al., 2005). However, evidence indicates that postural sway in the frontal plane is important, and able to account for different balance control mechanisms as well (e.g. McClenaghan et...
متن کاملPostural sway reduction in aging men and women: relation to brain structure, cognitive status, and stabilizing factors.
Postural stability becomes compromised with advancing age, but the neural mechanisms contributing to instability have not been fully explicated. Accordingly, this quantitative physiological and MRI study of sex differences across the adult age range examined the association between components of postural control and the integrity of brain structure and function under different conditions of sen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 31 42 شماره
صفحات -
تاریخ انتشار 2011